欧美阿v视频在线大全_亚洲欧美中文日韩V在线观看_www性欧美日韩欧美91_亚洲欧美日韩久久精品

主頁 > 知識庫 > 什么是數據挖掘技術?

什么是數據挖掘技術?

熱門標簽:善洋科技機器人電銷系統 重慶電銷機器人一般多少錢 深圳教育電話機器人 400電話申請廠家現貨 免費電子地圖標注軟件 區域地理地圖標注 蘋果美甲店地圖標注 云狐電話機器人 南昌電銷卡外呼系統廠家

1. 引言

數據挖掘(data mining)是從大量的、不完全的、有噪聲的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。隨著信息技術的高速發展,人們積累的數據量急劇增長,動輒以tb計,如何從海量的數據中提取有用的知識成為當務之急。數據挖掘就是為順應這種需要應運而生發展起來的數據處理技術。是知識發現(knowledge discovery in database)的關鍵步驟。

2. 數據挖掘的任務

數據挖掘的任務主要是關聯分析、聚類分析、分類、預測、時序模式和偏差分析等。

⑴關聯分析(association analysis)

關聯規則挖掘是由rakesh apwal等人首先提出的。兩個或兩個以上變量的取值之間存在某種規律性,就稱為關聯。數據關聯是數據庫中存在的一類重要的、可被發現的知識。關聯分為簡單關聯、時序關聯和因果關聯。關聯分析的目的是找出數據庫中隱藏的關聯網。一般用支持度和可信度兩個閥值來度量關聯規則的相關性,還不斷引入興趣度、相關性等參數,使得所挖掘的規則更符合需求。

⑵聚類分析(clustering)

聚類是把數據按照相似性歸納成若干類別,同一類中的數據彼此相似,不同類中的數據相異。聚類分析可以建立宏觀的概念,發現數據的分布模式,以及可能的數據屬性之間的相互關系。

⑶分類(classification)

分類就是找出一個類別的概念描述,它代表了這類數據的整體信息,即該類的內涵描述,并用這種描述來構造模型,一般用規則或決策樹模式表示。分類是利用訓練數據集通過一定的算法而求得分類規則。分類可被用于規則描述和預測。

⑷預測(predication)

預測是利用歷史數據找出變化規律,建立模型,并由此模型對未來數據的種類及特征進行預測。預測關心的是精度和不確定性,通常用預測方差來度量。

⑸時序模式(time-series pattern)

時序模式是指通過時間序列搜索出的重復發生概率較高的模式。與回歸一樣,它也是用己知的數據預測未來的值,但這些數據的區別是變量所處時間的不同。

⑹偏差分析(deviation)

在偏差中包括很多有用的知識,數據庫中的數據存在很多異常情況,發現數據庫中數據存在的異常情況是非常重要的。偏差檢驗的基本方法就是尋找觀察結果與參照之間的差別。

3.數據挖掘對象

根據信息存儲格式,用于挖掘的對象有關系數據庫、面向對象數據庫、數據倉庫、文本數據源、多媒體數據庫、空間數據庫、時態數據庫、異質數據庫以及internet等。

4.數據挖掘流程

⑴定義問題:清晰地定義出業務問題,確定數據挖掘的目的。

⑵數據準備:數據準備包括:選擇數據--在大型數據庫和數據倉庫目標中提取數據挖掘的目標數據集;數據預處理--進行數據再加工,包括檢查數據的完整性及數據的一致性、去噪聲,填補丟失的域,刪除無效數據等。

⑶數據挖掘:根據數據功能的類型和和數據的特點選擇相應的算法,在凈化和轉換過的數據集上進行數據挖掘。

⑷結果分析:對數據挖掘的結果進行解釋和評價,轉換成為能夠最終被用戶理解的知識。

⑸知識的運用:將分析所得到的知識集成到業務信息系統的組織結構中去。

5.數據挖掘的方法

⑴神經網絡方法

神經網絡由于本身良好的魯棒性、自組織自適應性、并行處理、分布存儲和高度容錯等特性非常適合解決數據挖掘的問題,因此近年來越來越受到人們的關注。典型的神經網絡模型主要分3大類:以感知機、bp反向傳播模型、函數型網絡為代表的,用于分類、預測和模式識別的前饋式神經網絡模型;以hopfield的離散模型和連續模型為代表的,分別用于聯想記憶和優化計算的反饋式神經網絡模型;以art模型、koholon模型為代表的,用于聚類的自組織映射方法。神經網絡方法的缺點是"黑箱"性,人們難以理解網絡的學習和決策過程。

⑵遺傳算法

遺傳算法是一種基于生物自然選擇與遺傳機理的隨機搜索算法,是一種仿生全局優化方法。遺傳算法具有的隱含并行性、易于和其它模型結合等性質使得它在數據挖掘中被加以應用。

sunil已成功地開發了一個基于遺傳算法的數據挖掘工具,利用該工具對兩個飛機失事的真實數據庫進行了數據挖掘實驗,結果表明遺傳算法是進行數據挖掘的有效方法之一[4]。遺傳算法的應用還體現在與神經網絡、粗集等技術的結合上。如利用遺傳算法優化神經網絡結構,在不增加錯誤率的前提下,刪除多余的連接和隱層單元;用遺傳算法和bp算法結合訓練神經網絡,然后從網絡提取規則等。但遺傳算法的算法較復雜,收斂于局部極小的較早收斂問題尚未解決。

⑶決策樹方法

決策樹是一種常用于預測模型的算法,它通過將大量數據有目的分類,從中找到一些有價值的,潛在的信息。它的主要優點是描述簡單,分類速度快,特別適合大規模的數據處理。最有影響和最早的決策樹方法是由quinlan提出的著名的基于信息熵的id3算法。它的主要問題是:id3是非遞增學習算法;id3決策樹是單變量決策樹,復雜概念的表達困難;同性間的相互關系強調不夠;抗噪性差。針對上述問題,出現了許多較好的改進算法,如 schlimmer和fisher設計了id4遞增式學習算法;鐘鳴,陳文偉等提出了ible算法等。

⑷粗集方法

粗集理論是一種研究不精確、不確定知識的數學工具。粗集方法有幾個優點:不需要給出額外信息;簡化輸入信息的表達空間;算法簡單,易于操作。粗集處理的對象是類似二維關系表的信息表。目前成熟的關系數據庫管理系統和新發展起來的數據倉庫管理系統,為粗集的數據挖掘奠定了堅實的基礎。但粗集的數學基礎是集合論,難以直接處理連續的屬性。而現實信息表中連續屬性是普遍存在的。因此連續屬性的離散化是制約粗集理論實用化的難點。現在國際上已經研制出來了一些基于粗集的工具應用軟件,如加拿大regina大學開發的kdd-r;美國kansas大學開發的lers等。

⑸覆蓋正例排斥反例方法

它是利用覆蓋所有正例、排斥所有反例的思想來尋找規則。首先在正例集合中任選一個種子,到反例集合中逐個比較。與字段取值構成的選擇子相容則舍去,相反則保留。按此思想循環所有正例種子,將得到正例的規則(選擇子的合取式)。比較典型的算法有michalski的aq11方法、洪家榮改進的aq15方法以及他的ae5方法。

⑹統計分析方法

在數據庫字段項之間存在兩種關系:函數關系(能用函數公式表示的確定性關系)和相關關系(不能用函數公式表示,但仍是相關確定性關系),對它們的分析可采用統計學方法,即利用統計學原理對數據庫中的信息進行分析。可進行常用統計(求大量數據中的最大值、最小值、總和、平均值等)、回歸分析(用回歸方程來表示變量間的數量關系)、相關分析(用相關系數來度量變量間的相關程度)、差異分析(從樣本統計量的值得出差異來確定總體參數之間是否存在差異)等。

⑺模糊集方法

即利用模糊集合理論對實際問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。系統的復雜性越高,模糊性越強,一般模糊集合理論是用隸屬度來刻畫模糊事物的亦此亦彼性的。李德毅等人在傳統模糊理論和概率統計的基礎上,提出了定性定量不確定性轉換模型--云模型,并形成了云理論。

6.評價數據挖掘軟件需要考慮的問題

越來越多的軟件供應商加入了數據挖掘這一領域的競爭。用戶如何正確評價一個商業軟件,選擇合適的軟件成為數據挖掘成功應用的關鍵。

評價一個數據挖掘軟件主要應從以下四個主要方面:

⑴計算性能:如該軟件能否在不同的商業平臺運行;軟件的架構;能否連接不同的數據源;操作大數據集時,性能變化是線性的還是指數的;算的效率;是否基于組件結構易于擴展;運行的穩定性等;

⑵功能性:如軟件是否提供足夠多樣的算法;能否避免挖掘過程黑箱化;軟件提供的算法能否應用于多種類型的數據;用戶能否調整算法和算法的參數;軟件能否從數據集隨機抽取數據建立預挖掘模型;能否以不同的形式表現挖掘結果等;

⑶可用性:如用戶界面是否友好;軟件是否易學易用;軟件面對的用戶:初學者,高級用戶還是專家?錯誤報告對用戶調試是否有很大幫助;軟件應用的領域:是專攻某一專業領域還是適用多個領域等;

⑷輔助功能:如是否允許用戶更改數據集中的錯誤值或進行數據清洗;是否允許值的全局替代;能否將連續數據離散化;能否根據用戶制定的規則從數據集中提取子集;能否將數據中的空值用某一適當均值或用戶指定的值代替;能否將一次分析的結果反饋到另一次分析中,等等。

在線存儲

標簽:隴南 廣東 廈門 南充 宜賓 那曲 那曲 曲靖

巨人網絡通訊聲明:本文標題《什么是數據挖掘技術?》,本文關鍵詞  什么,是,數據挖掘,技術,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《什么是數據挖掘技術?》相關的同類信息!
  • 本頁收集關于什么是數據挖掘技術?的相關信息資訊供網民參考!
  • 推薦文章
    欧美阿v视频在线大全_亚洲欧美中文日韩V在线观看_www性欧美日韩欧美91_亚洲欧美日韩久久精品
  • <rt id="w000q"><acronym id="w000q"></acronym></rt>
  • <abbr id="w000q"></abbr>
    <rt id="w000q"></rt>
    亚洲国产视频a| 国产suv精品一区二区6| 97久久人人超碰| 久久嫩草捆绑紧缚| 久久青草国产手机看片福利盒子| 天天影视涩香欲综合网 | 全部av―极品视觉盛宴亚洲| 欧美熟妇精品一区二区| 91精品福利视频| 亚洲精品视频一区二区| 成人app在线观看| 色婷婷av一区二区三区gif| 国产午夜精品一区二区三区视频| 日本视频中文字幕一区二区三区| 特级西西人体wwwww| 久久激情五月激情| 日本不卡免费在线视频| av网站免费在线播放| 日韩欧美亚洲一区二区| 免费精品99久久国产综合精品| 亚洲国产精品自拍视频| 国产精品69久久久久孕妇欧美| 久久久久国产精品麻豆| 国产福利一区二区| 三级影片在线看| 亚洲欧美日韩在线| 一级全黄裸体片| 欧美一区二区高清| jjzz黄色片| 国产激情视频网站| 久久国产精品国语对白| 综合网在线视频| 欧美日韩一区二区区别是什么 | 99精品国产热久久91蜜凸| 日本高清不卡aⅴ免费网站| 亚洲在线免费播放| 网站免费在线观看| 久久久.com| 成人的网站免费观看| 欧美性欧美巨大黑白大战| 久久免费美女视频| 懂色av一区二区三区免费观看| 中文字幕影音先锋| 亚洲 欧美综合在线网络| 国产呦小j女精品视频| 国产亚洲一本大道中文在线| 不卡的电视剧免费网站有什么| 欧美四级电影在线观看| 久久一二三国产| 性欧美疯狂xxxxbbbb| 免费观看a级片| 国产精品久久久久精k8| 69亚洲乱人伦| 国产亚洲综合在线| 91热门视频在线观看| 日韩欧美国产综合| 国产91富婆露脸刺激对白| 欧美三级视频在线播放| 久久66热re国产| 色乱码一区二区三区88| 日本va欧美va精品发布| 成人高潮免费视频| 午夜激情综合网| 日本少妇aaa| 婷婷综合另类小说色区| 免费欧美一级片| 精品国产免费人成电影在线观看四季 | 懂色av中文字幕一区二区三区 | 91麻豆国产香蕉久久精品| 制服视频三区第一页精品| 国产视频一区在线播放| 久久精品国产成人一区二区三区 | 夫妇交换中文字幕| 亚洲精品五月天| 人妻视频一区二区| 亚洲精品成人精品456| japanese中文字幕| 亚洲精品中文在线| 五月天婷婷丁香网| 午夜电影久久久| 国产精品白嫩白嫩大学美女| 奇米影视一区二区三区小说| 91久久香蕉国产日韩欧美9色| 精品亚洲成a人| 欧美精品第一页| 天天做天天摸天天爽国产一区 | 亚洲日本在线天堂| 黄色片网站免费| 亚洲第一成年网| 国产精品白嫩白嫩大学美女| 久久精品99国产国产精| 国产成人精品免费在线| 91美女在线视频| 在线观看亚洲专区| 国产成人在线视频网址| 日韩欧美在线1卡| 乱码一区二区三区| 亚洲视频一区二区在线| 午夜影院黄色片| 奇米精品一区二区三区在线观看一 | 久久国产劲爆∧v内射| 中文字幕一区在线观看| 中文字幕伦理片| 免费成人在线网站| 69精品人人人人| 黄色片子免费看| 成人免费在线观看入口| 少妇太紧太爽又黄又硬又爽小说| 国产午夜精品美女毛片视频| 亚洲天堂成人av| 午夜精品久久久久久久久久 | 一本到一区二区三区| 欧美精品丝袜久久久中文字幕| 成人aa视频在线观看| 亚洲国产精品高清| 男男视频亚洲欧美| 波多野结衣a v在线| 亚洲成人免费影院| 欧美日韩精品一区视频| 下面一进一出好爽视频| 欧美成人一区二区三区片免费| 成人做爰www看视频软件| 亚洲精品视频在线看| 91精品办公室少妇高潮对白| 成人免费视频caoporn| 国产精品免费久久久久| 欧美性x x x| 成人午夜激情在线| 国产精品久久久久久久岛一牛影视 | 精品一二线国产| 精品国产91久久久久久久妲己 | 91在线porny国产在线看| 中文字幕五月欧美| 91麻豆免费视频网站| 精品精品国产高清a毛片牛牛| 国产精品一区二区久久精品爱涩 | 国产伦理在线观看| 亚洲一区日韩精品中文字幕| 欧美三片在线视频观看| 性感美女一区二区三区| 午夜影视日本亚洲欧洲精品| 91精品在线麻豆| 亚洲午夜久久久久久久久红桃 | 公肉吊粗大爽色翁浪妇视频| 加勒比av一区二区| 国产欧美视频一区二区三区| 啪啪一区二区三区| 成人污视频在线观看| 亚洲欧洲中文日韩久久av乱码| 在线观看成人小视频| 日本一区二区免费视频| 日韩高清在线电影| 久久一区二区视频| 精品人妻伦九区久久aaa片| 99久久婷婷国产| 亚洲欧美色图小说| 欧美久久久久久蜜桃| 熟女少妇一区二区三区| 国产一区二区三区蝌蚪| 国产精品久线在线观看| 欧美视频一区二区三区在线观看 | 快灬快灬一下爽蜜桃在线观看| 国产精品资源在线观看| 一色桃子久久精品亚洲| 欧美日韩小视频| 一本色道久久综合亚洲精品图片| 韩国成人精品a∨在线观看| 国产精品久久久久影视| 欧美日韩视频专区在线播放| 久久国产精品无码一级毛片| 国产精品夜夜嗨| 伊人一区二区三区| 日韩美女视频在线| 欧美一级特黄高清视频| 久久久久中文字幕亚洲精品| 美女在线视频一区| 中文字幕亚洲在| 欧美一三区三区四区免费在线看| 亚洲午夜久久久久久久国产| 91丝袜美腿高跟国产极品老师| 日韩av午夜在线观看| 亚洲国产成人一区二区三区| 欧美午夜精品理论片a级按摩| 新91视频在线观看| av成人动漫在线观看| 婷婷成人综合网| 国产精品久久二区二区| 91精品国产一区二区| 亚洲精品久久久久久国| 2一3sex性hd| 成人亚洲一区二区一| 日韩精品一级中文字幕精品视频免费观看| 久久久久久久久久久电影| 欧美性猛交一区二区三区精品| 国产精成人品免费观看| 绯色av蜜臀vs少妇| 国产成人免费在线视频| 欧美日韩高清影院| 91亚洲国产成人精品一区二三 | 久久久99精品久久|