欧美阿v视频在线大全_亚洲欧美中文日韩V在线观看_www性欧美日韩欧美91_亚洲欧美日韩久久精品

主頁 > 知識庫 > Pandas自定義選項option設置

Pandas自定義選項option設置

熱門標簽:銀川電話機器人電話 外賣地址有什么地圖標注 煙臺電話外呼營銷系統 長春極信防封電銷卡批發 企業彩鈴地圖標注 預覽式外呼系統 如何地圖標注公司 上海正規的外呼系統最新報價 電銷機器人錄音要學習什么

簡介

pandas有一個option系統可以控制pandas的展示情況,一般來說我們不需要進行修改,但是不排除特殊情況下的修改需求。本文將會詳細講解pandas中的option設置。

常用選項

pd.options.display 可以控制展示選項,比如設置最大展示行數:

In [1]: import pandas as pd

In [2]: pd.options.display.max_rows
Out[2]: 15

In [3]: pd.options.display.max_rows = 999

In [4]: pd.options.display.max_rows
Out[4]: 999

除此之外,pd還有4個相關的方法來對option進行修改:

  • get_option() / set_option() - get/set 單個option的值
  • reset_option() - 重設某個option的值到默認值
  • describe_option() - 打印某個option的值
  • option_context() - 在代碼片段中執行某些option的更改

如下所示:

In [5]: pd.get_option("display.max_rows")
Out[5]: 999

In [6]: pd.set_option("display.max_rows", 101)

In [7]: pd.get_option("display.max_rows")
Out[7]: 101

In [8]: pd.set_option("max_r", 102)

In [9]: pd.get_option("display.max_rows")
Out[9]: 102

get/set 選項

pd.get_option 和 pd.set_option 可以用來獲取和修改特定的option:

In [11]: pd.get_option("mode.sim_interactive")
Out[11]: False

In [12]: pd.set_option("mode.sim_interactive", True)

In [13]: pd.get_option("mode.sim_interactive")
Out[13]: True

使用  reset_option  來重置:

In [14]: pd.get_option("display.max_rows")
Out[14]: 60

In [15]: pd.set_option("display.max_rows", 999)

In [16]: pd.get_option("display.max_rows")
Out[16]: 999

In [17]: pd.reset_option("display.max_rows")

In [18]: pd.get_option("display.max_rows")
Out[18]: 60

使用正則表達式可以重置多條option:

In [19]: pd.reset_option("^display")

option_context 在代碼環境中修改option,代碼結束之后,option會被還原:

In [20]: with pd.option_context("display.max_rows", 10, "display.max_columns", 5):
   ....:     print(pd.get_option("display.max_rows"))
   ....:     print(pd.get_option("display.max_columns"))
   ....: 
10
5

In [21]: print(pd.get_option("display.max_rows"))
60

In [22]: print(pd.get_option("display.max_columns"))
0

經常使用的選項

下面我們看一些經常使用選項的例子:

最大展示行數

display.max_rows 和 display.max_columns 可以設置最大展示行數和列數:

In [23]: df = pd.DataFrame(np.random.randn(7, 2))

In [24]: pd.set_option("max_rows", 7)

In [25]: df
Out[25]: 
          0         1
0  0.469112 -0.282863
1 -1.509059 -1.135632
2  1.212112 -0.173215
3  0.119209 -1.044236
4 -0.861849 -2.104569
5 -0.494929  1.071804
6  0.721555 -0.706771

In [26]: pd.set_option("max_rows", 5)

In [27]: df
Out[27]: 
           0         1
0   0.469112 -0.282863
1  -1.509059 -1.135632
..       ...       ...
5  -0.494929  1.071804
6   0.721555 -0.706771

[7 rows x 2 columns]

超出數據展示

display.large_repr 可以選擇對于超出的行或者列的展示行為,可以是truncated frame:

In [43]: df = pd.DataFrame(np.random.randn(10, 10))

In [44]: pd.set_option("max_rows", 5)

In [45]: pd.set_option("large_repr", "truncate")

In [46]: df
Out[46]: 
           0         1         2         3         4         5         6         7         8         9
0  -0.954208  1.462696 -1.743161 -0.826591 -0.345352  1.314232  0.690579  0.995761  2.396780  0.014871
1   3.357427 -0.317441 -1.236269  0.896171 -0.487602 -0.082240 -2.182937  0.380396  0.084844  0.432390
..       ...       ...       ...       ...       ...       ...       ...       ...       ...       ...
8  -0.303421 -0.858447  0.306996 -0.028665  0.384316  1.574159  1.588931  0.476720  0.473424 -0.242861
9  -0.014805 -0.284319  0.650776 -1.461665 -1.137707 -0.891060 -0.693921  1.613616  0.464000  0.227371

[10 rows x 10 columns]

也可以是統計信息:

In [47]: pd.set_option("large_repr", "info")

In [48]: df
Out[48]: 
class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   0       10 non-null     float64
 1   1       10 non-null     float64
 2   2       10 non-null     float64
 3   3       10 non-null     float64
 4   4       10 non-null     float64
 5   5       10 non-null     float64
 6   6       10 non-null     float64
 7   7       10 non-null     float64
 8   8       10 non-null     float64
 9   9       10 non-null     float64
dtypes: float64(10)
memory usage: 928.0 bytes

最大列的寬度

display.max_colwidth 用來設置最大列的寬度。
In [51]: df = pd.DataFrame(
   ....:     np.array(
   ....:         [
   ....:             ["foo", "bar", "bim", "uncomfortably long string"],
   ....:             ["horse", "cow", "banana", "apple"],
   ....:         ]
   ....:     )
   ....: )
   ....: 

In [52]: pd.set_option("max_colwidth", 40)

In [53]: df
Out[53]: 
       0    1       2                          3
0    foo  bar     bim  uncomfortably long string
1  horse  cow  banana                      apple

In [54]: pd.set_option("max_colwidth", 6)

In [55]: df
Out[55]: 
       0    1      2      3
0    foo  bar    bim  un...
1  horse  cow  ba...  apple

顯示精度

display.precision 可以設置顯示的精度:

In [70]: df = pd.DataFrame(np.random.randn(5, 5))

In [71]: pd.set_option("precision", 7)

In [72]: df
Out[72]: 
           0          1          2          3          4
0 -1.1506406 -0.7983341 -0.5576966  0.3813531  1.3371217
1 -1.5310949  1.3314582 -0.5713290 -0.0266708 -1.0856630
2 -1.1147378 -0.0582158 -0.4867681  1.6851483  0.1125723
3 -1.4953086  0.8984347 -0.1482168 -1.5960698  0.1596530
4  0.2621358  0.0362196  0.1847350 -0.2550694 -0.2710197

零轉換的門檻

display.chop_threshold  可以設置將Series或者DF中數據展示為0的門檻:

In [75]: df = pd.DataFrame(np.random.randn(6, 6))

In [76]: pd.set_option("chop_threshold", 0)

In [77]: df
Out[77]: 
        0       1       2       3       4       5
0  1.2884  0.2946 -1.1658  0.8470 -0.6856  0.6091
1 -0.3040  0.6256 -0.0593  0.2497  1.1039 -1.0875
2  1.9980 -0.2445  0.1362  0.8863 -1.3507 -0.8863
3 -1.0133  1.9209 -0.3882 -2.3144  0.6655  0.4026
4  0.3996 -1.7660  0.8504  0.3881  0.9923  0.7441
5 -0.7398 -1.0549 -0.1796  0.6396  1.5850  1.9067

In [78]: pd.set_option("chop_threshold", 0.5)

In [79]: df
Out[79]: 
        0       1       2       3       4       5
0  1.2884  0.0000 -1.1658  0.8470 -0.6856  0.6091
1  0.0000  0.6256  0.0000  0.0000  1.1039 -1.0875
2  1.9980  0.0000  0.0000  0.8863 -1.3507 -0.8863
3 -1.0133  1.9209  0.0000 -2.3144  0.6655  0.0000
4  0.0000 -1.7660  0.8504  0.0000  0.9923  0.7441
5 -0.7398 -1.0549  0.0000  0.6396  1.5850  1.9067

上例中,絕對值 0.5 的都會被展示為0 。

列頭的對齊方向

display.colheader_justify 可以修改列頭部文字的對齊方向:

In [81]: df = pd.DataFrame(
   ....:     np.array([np.random.randn(6), np.random.randint(1, 9, 6) * 0.1, np.zeros(6)]).T,
   ....:     columns=["A", "B", "C"],
   ....:     dtype="float",
   ....: )
   ....: 

In [82]: pd.set_option("colheader_justify", "right")

In [83]: df
Out[83]: 
        A    B    C
0  0.1040  0.1  0.0
1  0.1741  0.5  0.0
2 -0.4395  0.4  0.0
3 -0.7413  0.8  0.0
4 -0.0797  0.4  0.0
5 -0.9229  0.3  0.0

In [84]: pd.set_option("colheader_justify", "left")

In [85]: df
Out[85]: 
   A       B    C  
0  0.1040  0.1  0.0
1  0.1741  0.5  0.0
2 -0.4395  0.4  0.0
3 -0.7413  0.8  0.0
4 -0.0797  0.4  0.0
5 -0.9229  0.3  0.0

常見的選項表格:

選項 默認值 描述
display.chop_threshold None If set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends.
display.colheader_justify right Controls the justification of column headers. used by DataFrameFormatter.
display.column_space 12 No description available.
display.date_dayfirst False When True, prints and parses dates with the day first, eg 20/01/2005
display.date_yearfirst False When True, prints and parses dates with the year first, eg 2005/01/20
display.encoding UTF-8 Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console.
display.expand_frame_repr True Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width.
display.float_format None The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example.
display.large_repr truncate For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default), or switch to the view from df.info() (the behaviour in earlier versions of pandas). allowable settings, [‘truncate', ‘info']
display.latex.repr False Whether to produce a latex DataFrame representation for Jupyter frontends that support it.
display.latex.escape True Escapes special characters in DataFrames, when using the to_latex method.
display.latex.longtable False Specifies if the to_latex method of a DataFrame uses the longtable format.
display.latex.multicolumn True Combines columns when using a MultiIndex
display.latex.multicolumn_format ‘l' Alignment of multicolumn labels
display.latex.multirow False Combines rows when using a MultiIndex. Centered instead of top-aligned, separated by clines.
display.max_columns 0 or 20 max_rows and max_columns are used in repr() methods to decide if to_string() or info() is used to render an object to a string. In case Python/IPython is running in a terminal this is set to 0 by default and pandas will correctly auto-detect the width of the terminal and switch to a smaller format in case all columns would not fit vertically. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection, in which case the default is set to 20. ‘None' value means unlimited.
display.max_colwidth 50 The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a “…” placeholder is embedded in the output. ‘None' value means unlimited.
display.max_info_columns 100 max_info_columns is used in DataFrame.info method to decide if per column information will be printed.
display.max_info_rows 1690785 df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified.
display.max_rows 60 This sets the maximum number of rows pandas should output when printing out various output. For example, this value determines whether the repr() for a dataframe prints out fully or just a truncated or summary repr. ‘None' value means unlimited.
display.min_rows 10 The numbers of rows to show in a truncated repr (when max_rows is exceeded). Ignored when max_rows is set to None or 0. When set to None, follows the value of max_rows.
display.max_seq_items 100 when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of “…” to the resulting string. If set to None, the number of items to be printed is unlimited.
display.memory_usage True This specifies if the memory usage of a DataFrame should be displayed when the df.info() method is invoked.
display.multi_sparse True “Sparsify” MultiIndex display (don't display repeated elements in outer levels within groups)
display.notebook_repr_html True When True, IPython notebook will use html representation for pandas objects (if it is available).
display.pprint_nest_depth 3 Controls the number of nested levels to process when pretty-printing
display.precision 6 Floating point output precision in terms of number of places after the decimal, for regular formatting as well as scientific notation. Similar to numpy's precision print option
display.show_dimensions truncate Whether to print out dimensions at the end of DataFrame repr. If ‘truncate' is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns)
display.width 80 Width of the display in characters. In case Python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width.
display.html.table_schema False Whether to publish a Table Schema representation for frontends that support it.
display.html.border 1 A border=value attribute is inserted in the table> tag for the DataFrame HTML repr.
display.html.use_mathjax True When True, Jupyter notebook will process table contents using MathJax, rendering mathematical expressions enclosed by the dollar symbol.
io.excel.xls.writer xlwt The default Excel writer engine for ‘xls' files.Deprecated since version 1.2.0: As xlwt package is no longer maintained, the xlwt engine will be removed in a future version of pandas. Since this is the only engine in pandas that supports writing to .xls files, this option will also be removed.
io.excel.xlsm.writer openpyxl The default Excel writer engine for ‘xlsm' files. Available options: ‘openpyxl' (the default).
io.excel.xlsx.writer openpyxl The default Excel writer engine for ‘xlsx' files.
io.hdf.default_format None default format writing format, if None, then put will default to ‘fixed' and append will default to ‘table'
io.hdf.dropna_table True drop ALL nan rows when appending to a table
io.parquet.engine None The engine to use as a default for parquet reading and writing. If None then try ‘pyarrow' and ‘fastparquet'
mode.chained_assignment warn Controls SettingWithCopyWarning: ‘raise', ‘warn', or None. Raise an exception, warn, or no action if trying to use chained assignment.
mode.sim_interactive False Whether to simulate interactive mode for purposes of testing.
mode.use_inf_as_na False True means treat None, NaN, -INF, INF as NA (old way), False means None and NaN are null, but INF, -INF are not NA (new way).
compute.use_bottleneck True Use the bottleneck library to accelerate computation if it is installed.
compute.use_numexpr True Use the numexpr library to accelerate computation if it is installed.
plotting.backend matplotlib Change the plotting backend to a different backend than the current matplotlib one. Backends can be implemented as third-party libraries implementing the pandas plotting API. They can use other plotting libraries like Bokeh, Altair, etc.
plotting.matplotlib.register_converters True Register custom converters with matplotlib. Set to False to de-register.

到此這篇關于Pandas自定義選項option設置的文章就介紹到這了,更多相關Pandas option設置內容請搜索腳本之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • Pandas groupby apply agg 的區別 運行自定義函數說明
  • Python pandas自定義函數的使用方法示例

標簽:佳木斯 上饒 盤錦 潮州 西寧 宜昌 湖北 珠海

巨人網絡通訊聲明:本文標題《Pandas自定義選項option設置》,本文關鍵詞  Pandas,自定義,選項,option,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《Pandas自定義選項option設置》相關的同類信息!
  • 本頁收集關于Pandas自定義選項option設置的相關信息資訊供網民參考!
  • 推薦文章
    欧美阿v视频在线大全_亚洲欧美中文日韩V在线观看_www性欧美日韩欧美91_亚洲欧美日韩久久精品
  • <rt id="w000q"><acronym id="w000q"></acronym></rt>
  • <abbr id="w000q"></abbr>
    <rt id="w000q"></rt>
    在线观看一区二区三区四区| 51久久夜色精品国产麻豆| 久久综合色婷婷| 色香蕉成人二区免费| 2020国产成人综合网| 麻豆91在线观看| 日本xxx在线播放| 日韩三级免费观看| 免费不卡在线视频| 好吊视频在线观看| 久久这里只有精品视频网| 美女视频网站黄色亚洲| 精品人伦一区二区三电影| 精品欧美一区二区久久| 麻豆91在线观看| 精品人妻中文无码av在线| 久久久精品综合| 国产精品中文欧美| 日本午夜在线观看| 亚洲欧洲国产日本综合| 91亚洲精品久久久蜜桃| 欧美在线观看视频在线| 亚洲第一二三四区| 日本xxxx裸体xxxx| 精品国产乱码久久久久久久| 国产资源精品在线观看| 欧美视频www| 亚洲四区在线观看| 在线观看亚洲免费视频| 日韩亚洲欧美成人一区| 看片的网站亚洲| 亚洲 欧美 变态 另类 综合| 亚洲欧洲一区二区在线播放| 绯色av蜜臀vs少妇| 日韩区在线观看| 国产黑丝在线一区二区三区| 国产女人被狂躁到高潮小说| 亚洲一区中文日韩| 成人精品999| 国产精品美女久久久久aⅴ国产馆 国产精品美女久久久久av爽李琼 国产精品美女久久久久高潮 | 国内精品免费**视频| 99成人在线观看| 亚洲色图丝袜美腿| 美女黄色一级视频| 2023国产精品| av毛片久久久久**hd| 欧美一级欧美三级在线观看 | 91香蕉视频在线| 在线免费一区三区| 日韩电影一区二区三区| 日韩女同一区二区三区| 成人免费小视频| 国产人妻人伦精品1国产丝袜| www国产亚洲精品久久麻豆| 福利一区二区在线| 欧美日韩国产色站一区二区三区| 麻豆精品在线观看| 91国偷自产一区二区开放时间| 性感美女久久精品| 成人黄色短视频| 亚洲国产一区二区三区 | 亚洲成人精品一区二区| 男人舔女人下部高潮全视频| 亚洲欧美日韩久久精品| 人妻熟女aⅴ一区二区三区汇编| 国产精品欧美一级免费| www.17c.com喷水少妇| 国产日韩欧美精品电影三级在线| xxxx国产视频| 国产婷婷一区二区| 黄色网址在线视频| 亚洲欧美自拍偷拍| 一级黄色性视频| 一区二区三区精品在线| 亚洲色图第四色| 亚洲成人av一区二区三区| 人人干在线观看| 日韩影院在线观看| 在线免费观看日本一区| 国内外精品视频| 6080yy午夜一二三区久久| 成人精品在线视频观看| 精品国产免费一区二区三区四区| 免费观看一区二区三区| 中文字幕免费不卡在线| 成人网站免费观看| 一区二区三区中文在线观看| 国产精品69久久久久孕妇欧美| 午夜av电影一区| 91成人国产精品| 国产99久久精品| 久久亚洲影视婷婷| 中文字幕免费高清视频| 一区二区三区在线免费播放| 日韩亚洲欧美中文字幕| 另类小说综合欧美亚洲| 日韩一卡二卡三卡| 99免费观看视频| 亚洲乱码精品一二三四区日韩在线| 亚洲精品成人av久久| 日本网站在线观看一区二区三区| 在线视频一区二区三区| 成人v精品蜜桃久久一区| 久久精品一区蜜桃臀影院| 亚洲高清免费一级二级三级| 爱爱视频免费在线观看| 九九精品一区二区| 欧美变态tickling挠脚心| 丝袜熟女一区二区三区| 亚洲激情中文1区| 欧美特级一级片| 国产成人小视频| 欧美经典一区二区| 大胸美女被爆操| 加勒比av一区二区| 2024国产精品| 亚洲码无人客一区二区三区| 日韩高清不卡一区二区三区| 欧美精品一二三区| 欧洲成人午夜精品无码区久久| 亚洲日本乱码在线观看| 日韩女优一区二区| 懂色av一区二区在线播放| 久久久久高清精品| 欧美a在线播放| 国内精品国产成人国产三级粉色| 欧美成人精精品一区二区频| 7788色淫网站小说| 免费观看在线综合| 日韩久久精品一区| 国产jjizz一区二区三区视频| 久久精品国产亚洲一区二区三区| 欧美一二区视频| 中国黄色a级片| 欧美a级理论片| 精品91自产拍在线观看一区| 无码h肉动漫在线观看| 老司机精品视频在线| 337p粉嫩大胆噜噜噜噜噜91av| av黄色在线免费观看| 韩国一区二区三区| 国产亚洲一区字幕| 久久久久久久久久97| www.欧美日韩国产在线| 亚洲精品乱码久久久久久日本蜜臀| 欧美最新大片在线看| 91丝袜美腿高跟国产极品老师| 亚洲人亚洲人成电影网站色| 91成人国产精品| 欧亚乱熟女一区二区在线| 奇米影视在线99精品| 欧美精品一区二区蜜臀亚洲| 性少妇xx生活| av一区二区不卡| 亚洲第一搞黄网站| 精品国产免费久久| 天海翼在线视频| 91香蕉视频mp4| 亚洲国产欧美在线| 日韩免费观看高清完整版在线观看| 少妇av片在线观看| 成人黄页在线观看| 香蕉加勒比综合久久| 精品久久久网站| 欧美偷拍第一页| 久久福利小视频| 极品少妇xxxx偷拍精品少妇| 国产精品久久久久影院老司| 91传媒视频在线播放| 亚洲一区二区三区综合| 国产乱子轮精品视频| 一区二区在线观看视频| 日韩视频不卡中文| 熟女少妇a性色生活片毛片| 女王人厕视频2ⅴk| 另类小说综合欧美亚洲| 亚洲欧洲国产专区| 日韩欧美在线影院| 少妇高潮在线观看| 中文字幕18页| 国产一区二区三区美女| 亚洲伦在线观看| 精品捆绑美女sm三区| 免费中文字幕在线| 国产国语性生话播放| 成人性生交大片免费看中文| 亚洲成a人片在线观看中文| 久久久久久久久久看片| 欧美亚洲综合久久| 国产真人真事毛片视频| 97国产一区二区| 久久99最新地址| 亚洲精品免费在线观看| 亚洲精品一区二区三区在线观看| 色就色 综合激情| 无码少妇精品一区二区免费动态| 99国产精品99久久久久久| 久久精品72免费观看| 亚洲激情图片一区| 国产日韩欧美麻豆|